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ABSTRACT
Learning personalized self-management routines is pivotal for peo-
ple with type 1 diabetes (T1D), particularly early in diagnosis.
Context-aware technologies, such as hybrid closed-loop (HCL) in-
sulin pumps, are important tools for diabetes self-management.
However, clinicians have observed that practices using these tech-
nologies involve significant individual differences. We conducted
interviews with 20 adolescents and young adults who use HCL
insulin pump systems for managing T1D, and we found that these
individuals leverage both technological and non-technological
means to maintain situational awareness about their condition.
We discuss how these practices serve to infrastructure their self-
management routines, including medical treatment, diet, and glu-
cose measurement-monitoring routines. Our study provides in-
sights into adolescents’ and young adults’ lived experiences of
using HCL systems and related technology to manage diabetes,
and contributes to a more nuanced understanding of how the HCI
community can support the contextualized management of diabetes
through technology design.
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1 INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disorder most commonly
diagnosed in young people, displaying a notable rise from an es-
timated 1.48 per 1,000 individuals aged 19 or younger in 2001 to
2.15 per 1,000 in 2017 [45]. T1D is characterized by inadequate
endogenous insulin production [48], resulting in persistent hyper-
glycemia (i.e., high blood glucose/sugar levels) and necessitating
lifelong exogenous insulin administration to counter this effect [51].
T1D is also recognized as among the most psychologically and be-
haviorally intricate of all chronic medical conditions (e.g., [36]).
Managing T1D involves attending to and exerting control over
complex and dynamic aspects of personal life (e.g., diet and activ-
ity) and administering medication day and night [17, 29, 47]. The
highly situated nature of managing T1D suggests that there are var-
ious individual differences impacting management (e.g., [17]) and
no one-size-fits-all therapeutic approach [5], especially for young
people [24].

Consequently, self-management practices significantly influence
T1D treatment outcomes, as individuals are responsible for 95%
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of lifelong diabetes management [36], including maintaining vig-
ilance over glucose levels, regular administration of doses of in-
sulin (referred to as “bolusing”) to offset blood glucose increases
caused by meals [74], and making adjustments for hypoglycemia
(i.e., low blood glucose/sugar levels) or hyperglycemia (i.e., high
blood glucose/sugar levels). Because T1D is often diagnosed during
youth or adolescence, the age and developmental stage of diag-
nosed individuals offers an appropriate window for interventions
to enhance self-care behaviors [20]. However, adolescents’ and
young adults’ (AYAs’) self-management levels notably lag behind
other age groups [20], resulting in severe consequences like hypo-
glycemia and diabetic ketoacidosis (DKA), a critical and acute com-
plication in which the body produces an overabundance of blood
acids (ketones) and often results in hospitalization [23]. Hence,
swiftly and effectively performing, adapting, and adjusting daily
self-care practices [34, 54], referred to as T1D self-management rou-
tines, are imperative for optimal glycemic control (i.e., maintaining
blood glucose levels within the targeted range).

Technological support can be crucial for T1D self-management
routines of AYAs, with context-aware diabetes technology like hy-
brid closed-loop (HCL) insulin pump systems playing a pivotal role.
HCL systems provide comprehensive situational information to
individuals, including near-future glucose patterns and visualized
glucose readings. These integrated systems combine continuous
glucose monitors (CGMs, which can continuously monitor glu-
cose levels and update values every five minutes), insulin pumps or
CGM receivers (e.g., mobile apps displaying glucose trends), and pre-
dictive algorithms (e.g., [5, 51]). Within HCL systems, algorithms
facilitate automatic insulin adjustments and suspensions based
on glucose predictions [62], issue alerts for glucose fluctuations
(e.g., [29, 55]), and assist in maintaining bolusing routines, offering
various advantages. Such complex functionalities clearly support
young people’s awareness about their conditions, but these tech-
nologies also require incorporation into a broader set of resources
employed for self-management—and learning how to infrastructure
routines that can leverage these resources effectively.

People learning self-management routines with HCL systems
have been shown to encounter disruptions or breakdowns, such as
alarm fatigue and abandonment of use [51]. Consequently, young
patients also seek awareness support from other aspects of their
daily lives, such as bodily cues [19] or self-experience [17]. Taken
together, this personalized combination of technological and non-
technological resources and the AYAs’ relations to them that are
embedded in different temporal and social contexts constitute a
health infrastructure that—when working well—invisibly supports
the everyday routines of self-care [61, 65, 66] and facilitates learning
of proactive management techniques [52]. In this case, the situa-
tional awareness gained by these infrastructures’ use facilitates
proactive blood glucose management, leading to improved over-
all glycemic control [52]. Thus, it is important to understand how
young people assemble and employ both technological and non-
technological resources when learning self-management routines
amid disruptions to achieve optimal glycemic control.

Prior studies in the HCI community have contributed to un-
derstanding contextual factors like personal experience [17] and
culture [73] impacting diabetes management, novel technology
design for reflection [50], and challenges encountered during life

transitions of young adults with T1D [41] using insulin pump tech-
nology [37]. However, each of these investigations focuses on spe-
cific components of the health infrastructure surrounding T1D
self-management; we take the view that AYAs learning to manage
this condition learn to use different facets of the infrastructure in
different ways and under different conditions (e.g., when break-
downs occur with the HCL technology or when personal experience
falls short.) There is still more to be understood about this process
using an infrastructural inversion approach [9], specifically explor-
ing how the lived experiences and strategies of self-management
draw on both technological and non-technological contexts. AYAs
provide a particularly compelling case study for this work given
the developmental and social challenges they face in learning these
routines, as does the deployment of increasingly automated dia-
betes management technologies—HCL systems—as a cornerstone
of this health infrastructure.

To achieve the goal, we ask: how do adolescents and young
adults infrastructure their resources (i.e., situational aware-
ness) to learn T1D self-management routines? To answer this
question, our study employs semi-structured interviews [60] with
AYAs using HCL systems for T1D management. We then conduct
thematic analysis [10] to make sense of how these individuals in-
frastructure various resources—particularly, those that contribute
to situational awareness—when learning self-management routines.
We finally discuss how AYAs use these infrastructures to support
three key self-management routines: medical treatment, diet, and
glucose monitoring. Our study’s contribution is threefold. First, we
uncover diverse situational awareness in T1D self-management
and highlight AYAs’ infrastructuring practices for learning self-
management routines when facing breakdowns. Second, we offer
nuanced insights into contextualized diabetes management that
has been advocated by the HCI community, particularly extending
this understanding to younger individuals than have been studied
previously. Third, our study informs future context-aware diabetes
technology design, which is particularly relevant, as this technology
is rapidly evolving [5].

2 BACKGROUND AND RELATEDWORK
2.1 Context-aware technology for health and

wellness self-management in HCI
In HCI, personal informatics studies highlight the significance of
capturing contextual information with self-monitoring technolo-
gies for effective health/wellness self-management. Missing this
contextual information can lead to misinterpretation and reduced
self-reflection opportunities, which may undermine bodily sense-
making (e.g., [2, 14, 53]). These contexts include but are not limited
to disruptions in life (e.g., pregnancy [53]), (non-)routine circum-
stances [14], historical data [32], and relevant contributors to a
health condition [59].

Contextual information resources provided by these technolo-
gies or systems can aid patients to learn “what is going on around
you to decide what to do” [26, 32], which is referred to as situa-
tional awareness. Situational awareness is particularly crucial for
dynamic fields like healthcare management with high information
flows and potential consequences for poor decisions [32]—including
management of T1D.
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However, scholarship on context-aware technology in HCI pre-
dominantly centers on personal wellness systems (e.g., designing
ambruptive systems [46] or wearable devices [43] to aid in keep-
ing healthy habits), with limited attention to clinical treatment
contexts (e.g., [32]). Our study investigates HCL systems, an in-
creasingly utilized clinical treatment technology leveraging phys-
iological sensor-based data, and our larger aim is to contribute
insights for enhancing the integration of contextual information
for effective situational awareness in T1D management.

2.2 Contemporary technology for diabetes care
Effective T1D management entails substantial responsibilities, in-
cluding frequent glucose monitoring, precise carbohydrate quan-
tification, and insulin administration [62]. In addition to these tasks
carried out at all ages, young people also navigate changes and
challenges influencing treatment routines, such as physical growth
and sexual maturation [24], time-related conflicts [19], and peer in-
fluence [8], among other considerations. These responsibilities and
challenges increase the burden of diabetes management [24, 62].

To alleviate the management burden [62], there has been rapid
evolution in diabetes technologies in recent decades (e.g., [5, 51]).
Studies have reviewed novel and emerging diabetes technologies
(e.g., [5, 62]), primarily encompassing insulin pumps (wearable dig-
ital devices delivering basal or bolus insulin subcutaneously, often
with tubing), continuous glucose monitors (CGMs, comprising of
a receiver for glucose values, a transmitter, and a subcutaneous
glucose sensor) [5], as well as open- and closed-loop systems. Open-
loop systems include sensor-augmented pumps or SAPs, which
integrate CGMs and insulin pumps, requiring manual management.
Some SAPs include a feature for automatic insulin suspension to
avert hypoglycemia [5]. More advanced hybrid closed-loop (HCL)
systems, also called automated insulin delivery (AID) systems, are
comprised of CGMs, insulin pumps, and, increasingly, mobile ap-
plications. HCL systems incorporate predictive algorithms that can
automatically adjust insulin delivery and suspend insulin deliv-
ery based on algorithmic prediction of glucose values [62]. Such
systems also include alerts or alarms notifying individuals about
various situations, such as high or low glucose levels, low battery
of diabetes management devices, and low insulin storage [63]. Fi-
nally, HCL systems enable users to configure various modes (e.g.,
to accommodate changing insulin needs with exercise), and allow
others (e.g., parents) to co-monitor blood glucose levels of the in-
dividual managing diabetes via smartphone. Hybrid closed-loop
systems and CGMs can lead to promising glycemic control out-
comes (e.g., [4, 29]), notably addressing hypoglycemia, a pivotal
facet of diabetes management [25], in vulnerable populations like
young people.

Given the remarkable pace of advancement in diabetes technol-
ogy [5] and its practical adoption by adolescents and young adults,
it becomes essential to comprehend the ways through which young
individuals integrate or employ these technologies to develop per-
sonalized management routines.

2.3 Learning of diabetes self-management
routines by young people

Routine refers to patterns of actions that can be performed, adapted,
and modified [56, 61]. Self-management routines are pivotal in

navigating life with T1D and are adapted when experiencing dis-
ruptions, such as during the COVID-19 pandemic [34]. This espe-
cially holds true for young people, who undertake an increasing
responsibility for self-management in their daily lives [36, 42] and
encounter unique challenges associated with social, psycholog-
ical, and physiological factors impacting T1D self-management
(e.g., [19, 24, 36, 58]). Moreover, individual differences in the daily
diabetes management process among young people [17], involving
dietary choices, physical activity, and school attendance [24, 41],
underscore the significance of personalized management over ad-
herence to generic health guidelines [17].

Learning personalized self-management routines, to include
learning from glucose data [42] and body signals, acquiring per-
sonal experience, and performing carbohydrate calculation [19],
is an imperative process for young people, particularly consider-
ing that self-management levels among this population are often
suboptimal [20]. However, learning a self-management routine
can be overwhelming, cumbersome, time-consuming, and disrup-
tive [17], as young people must consider intricate aspects of daily
routines and comprehend the correlation between glucose levels
and various life experiences [17]. This can be especially signif-
icant for individuals undergoing life transitions and events like
moving away from home, socializing, attending parties, and en-
rolling in college [41, 57]. All of these transitions may challenge
already-established self-management routines. Inability to adapt to
life routine breakdowns or disruptions can result in compromised
glycemic control [24] and other consequential risks such as diabetic
ketoacidosis (DKA), “a serious acute complication” of T1D [23].

Various aspects of diabetes technologies, as mentioned in Section
2.1, support AYAs’ self-management with T1D (e.g., [52]). Studies
have shown that hybrid closed-loop systems can improve patients’
active or passive awareness of hypoglycemia and hyperglycemia
(e.g., both during waking hours and during sleep [29, 39, 47, 55]).
Recently, Messer and colleagues underscored the importance of
situational awareness in signaling AYAs’ proactive blood glucose
management in the context of hybrid closed-loop system usage,
associated with improved glycemic control compared to reactive
management [52]. However, the specific constitution of this situa-
tional awareness remains unclear. Additionally, it is reported that
young people often experience breakdowns during technology-
assistive learning processes, such as alarm fatigue, sensor errors,
and other technical issues, as well as emotional factors like diabetes
distress [30], leading some to abandon using diabetes technology
altogether [51].

In summary, prior research primarily concentrates on specific
contexts—either technological or non-technological—regarding
young people’s self-management routines or experiences. Few stud-
ies have explored holistic approaches to self-management routines
spanning both contexts, a perspective that would be particularly
valuable in understanding how individuals integrate diverse learn-
ing resources when encountering disruptions.

2.4 Infrastructuring for health management
2.4.1 Infrastructure and infrastructuring. Generally, infrastructure
encompasses physical (e.g., highways), technical (e.g., e-health sys-
tems), information (e.g., social networking sites), and human re-
sources that facilitate a society’s routine functions [61]. In Star
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and Bowker’s work “How to infrastructure” [66], infrastructure is
used as a verb, and it is noted that the human body can also be
an infrastructure (e.g., emotions). As indicated in Star and Ruh-
leder’s work [67] and summarized by Dillahunt and colleagues,
infrastructure is “relational, situational, and practical” [21, p. 5] and
usually invisible or transparent unless (or until) its users experience
breakdowns or disruptions [35, 61, 67]. In other words, infrastruc-
ture is not merely a passive substrate but also embodies an endur-
ing process of alignment between individuals and their contextual
settings [61]. In the course of this process, the actions involving
aligning and navigating infrastructure are referred to as "infrastruc-
turing” [27, 66]. Individual or collective infrastructuring practices
typically aim for specific goals [27]. In the HCI community, infras-
tructuring has been adopted to investigate civic participation [44],
community-centered mentorship [21], mobile knowledge tasks [27],
resilience [61], creativity work [64], and healthcare (e.g., [7, 35, 71]),
with a focus on emphasizing the interactions and arrangements
involving diverse technological elements and human actors [21].
As the focus of the present study is T1D management, we next
expand related studies centered around health management and
healthcare.

2.4.2 Infrastructuring in health management contexts. In the HCI
community, the infrastructuring lens has often been adopted to
understand individuals’ practices of aligning or assembling various
entities when experiencing breakdowns or uncertainties during
interactions with healthcare systems (e.g., [7, 18, 35]). For exam-
ple, Bhat and colleagues [7] examined how patients and healthcare
professionals aligned and coordinated technologies as diverse as
WhatsApp to continue healthcare services and consultation (i.e.,
infrastructuring work) during the initial COVID-19 pandemic dis-
ruptions, specifically in the context of telehealth. Gui and Chen [35]
focused on macro-level dynamics of the healthcare system, such as
healthcare providers and insurance companies. Their study shed
light on how caregivers align and navigate the intricate and frag-
mented healthcare infrastructure, thus optimizing its functional-
ity at the “micro, individual scale.” Furthermore, infrastructuring
practices occur during life transitions like gender [71] and mother-
hood transitions [11], wherein individuals may experience dramatic
changes in the body (e.g., hormone and emotional changes) but also
systematic infrastructural support deficiencies. For example,Wilcox
and colleagues investigated the care infrastructuring of transgen-
der and non-binary people amid various uncertainties in society
(e.g., unpredictable consequences of exposure under misinforma-
tion or harmful information related to gender discourses) [71]. They
found that this population often infrastructures their care by “as-
sembl[ing] together components of informal, digital social worlds,
formalized knowledge sources and processes, and self-reflective
experiences” [71, p. 8], such as incorporating self-tracking tech-
nologies to make sense of emotional changes.

The diagnosis of T1D disrupts young people’s relations with
their body, rendering visible the previously backgrounded pro-
cesses and routines by which the body cares for its own blood
glucose levels [67]. These changes manifest in everyday activities
impacting blood glucose levels such as eating, drinking, walking,
driving, sleeping, and working, which necessitates the assemblage
and integration of new kinds of health infrastructures. Until truly

formalized and learned, these infrastructures can be brittle and
prone to failure; for example, James and colleagues [41] compre-
hensively outlined breakdowns in the transition to university life
for young adults with T1D. These breakdowns, reflected in uncon-
trolled glucose levels, range from eating (e.g., exposure to new food)
to drinking (e.g., increasing social events among young people and
the introduction of alcoholic beverage consumption) to physical
activities (e.g., walking to school and house cleaning) to uncon-
trollable schedules (e.g., ad-hoc meetings). Through adopting the
lens of infrastructuring, our study examines how AYAs employ
various resources, both technological and non-technological, to
learn self-management routines.

3 METHOD
Our study employs a semi-structured interview method [60], as
we wanted to qualitatively and empirically understand patients’
lived experience with managing T1D in the context of a HCL in-
sulin pump system–and, in particular, to investigate the strategies
employed to manage blood glucose fluctuations based on the affor-
dances of the HCL user interface.

Adolescents and young adults (AYAs, aged 15–25) with T1D
exhibit the highest average HbA1c levels compared to other age
groups [31] and share distinct developmental, cognitive, and psycho-
logical transitions [1, 16, 38, 52]. Common challenges with effective
self-management may be exacerbated by the unique transitions and
hurdles encountered by AYAs. These transitions include but are not
limited to physiological changes (e.g., physical growth and sexual
maturation [24]), the shift to independent living (e.g., moving to col-
lege) [41], social engagements [41], mental well-being [6], and peer
influences [8], all of which can disrupt established management
routines. With this in mind, we study AYAs as a cohesive group in
this research in order to explore this developmental milestone, rather
than solely adolescents or young adults. We recruited 20 AYAs (see
Table 1 for details) aged 15–25 (50% male, 55% non-Hispanic white)
from the patient population at the University of Colorado Anschutz
Medical Campus in the United States.

All participants were using an advanced HCL system for T1D
management (see Figure 1), specifically the Tandem t:slimX2 insulin
pump with Control-IQ technology (referred to Control-IQ in our
study) paired with a Dexcom G6 CGM, prior to study enrollment.
The Control-IQ algorithm predicts glucose levels 30 minutes in the
future using data from the Dexcom CGM and the device’s insulin
delivery history and adjusts insulin delivery accordingly [28]. This
includes dynamically adjusting basal insulin and also delivering
an automatic correction bolus of insulin up to once per hour to
maximize in-target glucose levels (70–180 mg/dl).

After consenting to the study, participants completed a virtual en-
rollment visit with a study coordinator or investigator. Information
was collected per participant report on diabetes history, diabetes
technology use, and demographics. Participants were instructed
how to complete a user-initiated, real-time survey each time they
interacted with their insulin pump for a period of 2 weeks. The
surveys were designed to collect data on what prompted the user
to interact with their pump (i.e., an alert from the device, habitual
checking, or symptoms of hypoglycemia). For the purposes of this
study, the survey served as a memory cue for the participant and
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Figure 1: The image shows how an individual usually wears
a HCL system (i.e., a CGM along with an insulin pump with
an algorithm). The CGM senses glucose levels and sends
data to the insulin pump via Bluetooth. The insulin pump
shows glucose numbers and predicted trends and delivers
insulin to the body. The algorithm embedded in the insulin
pump predicts glucose levels and adjusts insulin delivery
accordingly.

allowed the interviewer to ask specific questions prompted by each
participants’ specific actions over those two weeks. Moreover, we
consider participation in the survey component of the research to
be a structured activity intended to help the participants reflect
more explicitly on their diabetes management practices.

At the end of the 2-week study period, participants completed a
final virtual interview with the study coordinator or investigator.
Interviews lasted from 15–45 minutes (mean = 35 minutes), depend-
ing on the responses of the participants. A series of predetermined
questions were asked to participants during the interviews. Ques-
tions were open-ended and designed to foster a conversation about
diabetes management, both over the 2-week study period and over
the participant’s entire experience with diabetes. The topics of
these questions centered around reasons for checking and manag-
ing blood glucose, self-management routines with HCL systems,
atypical or unusual activities disrupting participants’ routines, and
reasons for perceived (un)successful self-management.

Our study was approved by the IRB at the University of Colorado
Anschutz Medical Campus. Several trained clinical professionals
on the research team possess credentials aligned with accepted
medical ethics guidelines for working with patients. All interviews
were conducted and recorded via Zoom. Data collection was com-
pleted after the interviews. Transcripts of the interviews were then
generated using the Otter.ai platform1, then deidentified by the
study coordinator prior to analysis.

We conducted thematic analysis to comprehend how our partici-
pants infrastructure resources and maintain situational awareness
in order to learn how to manage their condition. Four authors on
our research team open-coded eight randomly selected transcripts.
We then identified similar patterns among codes and inductively

1https://otter.ai/

clustered descriptive codes into sub-patterns using a Miro Board2.
Two high-level themes were synthesized, highlighting participants’
strategies of maintaining diabetes awareness, from the clustered
sub-pattern themes. During this inductive clustering process, our
full research team met weekly to discuss and iteratively refine sub-
patterns and themes, ultimately forming a codebook for deductive
coding (see Table 2). Utilizing this codebook, two authors indepen-
dently performed deductive coding on the full set of 20 transcripts
and created coding memos to develop the study’s narrative. With
respect to understanding and interpreting the data from this study,
we note that our research team represents both lived experience
with T1D and clinicians with years of experience working with
T1D patients.

Our research team does also include one diabetes research clini-
cian who took a full-time position with Tandem Diabetes Care, Inc.
following the data collection phase of this project and one certified
pump trainer for Tandem devices. These affiliations with Tandem
provided our team with additional expertise on interpreting partici-
pant comments about the operation of the specific device described
in this study.

4 FINDINGS
4.1 Reexamining relations with health

infrastructures: Maintaining diabetes
awareness without technology

4.1.1 Embodied manifestations. Embodiment typically refers to the
connection between mind and body, and how our senses through
our bodies inform our experience; as such, the field of embodied
computing investigates the connection between our body’s experi-
ences and technology (e.g. throughwearables ormedical technology
devices) [22]. One aspect of our findings involved how participants’
senses influenced their awareness and subsequent interactions with
the technology. Most participants (13/20) reported that they recog-
nize blood glucose status from body signals and other embodied
feelings caused by blood glucose fluctuations, which suggests the
importance of self-awareness for learning management routines
such as when to engage with their insulin pump and/or CGM re-
ceiver. These manifestations can be physically and/or emotionally
embodied and are more easily detected during hypoglycemia, as
advised by our clinical team.

Nearly half of these participants who mentioned embodied
awareness (5/13) reported recognizing their blood glucose levels
through physical symptoms, notably hypoglycemia-related shaki-
ness and nausea, prompting them to monitor their diabetes devices
and subsequently make informed treatment choices. As P10 de-
scribed their awareness, “I might check [my blood sugar on the
insulin pump] if I was [. . . ] feeling particularly nauseous or shaky or
something.” P2 echoed such feelings: “It feels like shaky legs [are]
kind of my main thing, like my legs start to shake a little or feel funny
and like kind of weird to walk or move then it starts to or I start to feel
off. ” Some participants used such signals as a means to proactively
manage blood glucose levels. As P11 shared, “I just get a little shaky.
And that’s about it. I generally catch it before anything happens.”

2https://miro.com/

https://otter.ai/
https://miro.com/
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Table 1: Participants’ Demographic Information

Participants’
Identifier

Gender Age Race Ethnicity

P1 Male 22 White/Caucasian Not Hispanic/Latino

P2 Male 16 White/Caucasian Not Hispanic/Latino

P3 Female 20 Native HI/ Pacific Islander Not Hispanic/Latino

P4 Female 22 Native HI/ Pacific Islander Not Hispanic/Latino

P5 Male 15 Asian Not Hispanic/Latino

P6 Male 18 White/Caucasian Not Hispanic/Latino

P7 Female 15 White/Caucasian Hispanic/Latino

P8 Female 21 White/Caucasian Not Hispanic/Latino

P9 Male 18 Native HI/ Pacific Islander Hispanic/Latino

P10 Male 18 White/Caucasian Not Hispanic/Latino

P11 Male 17 Other Hispanic/Latino

P12 Male 22 White/Caucasian Not Hispanic/Latino

P13 Female 16 White/Caucasian Not Hispanic/Latino

P14 Male 15 White/Caucasian Hispanic/Latino

P15 Male 16 White/Caucasian Not Hispanic/Latino

P16 Female 16 White/Caucasian Not Hispanic/Latino

P17 Female 17 White/Caucasian Not Hispanic/Latino

P18 Female 16 White/Caucasian Not Hispanic/Latino

P19 Female 15 Black/African American Not Hispanic/Latino

P20 Female 25 Other Hispanic/Latino

Table 2: Iteratively Developed Codebook

Theme Description Sub-pattern Description Example

Maintaining
diabetes
awareness
without
technology

Adolescents and young adults with
T1D seek or preserve situational
awareness about their conditions
with non-technological factors in
everyday life.

Embodied
manifestations

Participants’ bodily senses can influence
their awareness and subsequent interac-
tions with the technology.

“It feels like shaky legs [are] kind of my
main thing, like my legs start to shake a
little or feel funny and like kind of weird
to walk or move then it starts to or I start
to feel off. ” (P2)

Food
information

Participants acquire essential awareness
from objective dietary details, especially
carbohydrate amount, for managing daily
routines.

“We have a little scale that can. . .
like. . .weigh stuff out that doesn’t come
with a nutrition label: apples or grapes or
something.” (P14)

Self-reflective
patterns

Participants’ awareness of glucose status
stems from self-acquired knowledge and
introspection on lived experience.

“Later that day. I’m guessing I was just
keeping an eye on it just because I had
been active all day. I have a tendency to
crash after exercise.” (P1)

Maintaining
diabetes
awareness with
technology

Adolescents and young adults with
T1D seek or preserve situational
awareness about their conditions
with various features of diabetes
technology.

Data
awareness

Participants monitor, perceive, and com-
prehend visible data such as glucose num-
bers displayed on management devices.

“I just like seeing the adjustments made
when it’s automated. I like data, numbers,
and stuff. So I like seeing what it [blood
glucose] does.” (P1)

Nudging Nudges comprise notifications or alerts
from diabetes technologies like insulin
pumps, continuous glucose monitors, and
mobile apps, serving to notify individuals
about various situations about conditions.

“Yeah, I rely on it a lot, especially because
during school I’m not thinking about oh,
like unless it beeps at me then I check
it. . . ”(P7)

Algorithmic
prediction/automation

Participants acquire awareness of near-
future trends of glucose levels predicted
by algorithms.

"I like looking at the little diamond on the
Control-IQ that says if it predicts it will
go low." (P2)

In addition to these common symptoms, participants also report
awareness of low blood sugar levels (hypoglycemia) from other
symptoms, including sweating, dizziness, and headaches. P2 de-
scribed somatic feelings such as hunger and tiredness associated
with hypoglycemia.

However, embodied symptoms of hyperglycemia might not be as
reliable as those of hypoglycemia. When present, these symptoms
(e.g., feelings of tiredness or weakness [70]) can also signal diabetes

device users to validate their glycemic status by checking their
CGM, either on their insulin pump or by using a phone application,
particularly with uncertain symptoms related to hyperglycemia.

“I’m like laying down or sitting down and I start to
become like. . . suddenly really hot and kind of sweaty
and hungry, then I also think it’s low.When it’s high, it’s
hard to tell. . . I usually just become really tired, really
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fast. And then I think, maybe it’s my blood sugar, and
then I’ll check, but sometimes it’s not. I’m just tired.”
(P2)

Furthermore, participants acknowledge glycemic status via emo-
tional manifestations. As shared by P10, beyond physical signals
of nausea and lethargy, “I also feel like I’m kind of more irritable
when I’m high.” P20 also shared the symptoms of annoyance and
frustration in detail while interacting with clients in the workplace,
particularly during hypoglycemia:

“I don’t think I have much of an emotional reaction
unless it’s like a very severe low. I’ve had situations
with the client. I think I first ignored it because I was
like. . . okay I’m in session away. I then ignored it again.
And then I turned off my insulin—like I paused all in-
sulin. The third time it beeped at me it was like 65, with
double arrows going down or something. And so I was
like. . . I was feeling sorry. I was starting to get frustrated
with the client. Because that’s what happens when I get
low blood sugars, then I start getting frustrated with
people. It’s more of an annoyance than frustration. It’s
actually I’m just annoyed because I’m like, ‘Don’t talk
to me.’” (P20)

4.1.2 Food information. As indicated by participants, objective
dietary details, especially carbohydrate amount, hold significant
importance in acquiring essential awareness for managing daily
routines. This is particularly relevant for routine bolusing, intri-
cately linked with blood glucose fluctuations (e.g., pre-meal insulin
dosing).

Participants noted how clear or obvious food informationmade it
much easier to calculate carbohydrates for optimal bolusing, leading
to improved blood glucose level control. As P8 stated, “for breakfast
this morning, I got an egg sandwich from Starbucks. And so I know,
like, that’s very obvious what the carbs are. It says it [carbohydrate
quantity] right on it. And so that’s why I didn’t like go high.”

Simultaneously, many participants expressed concerns about
incorrect calculation that was the suspected cause of high or low
blood glucose levels. As P8 shared, “part of the reason I went high
[was that] I just also way underdosed for what I ate, which I know
that I did that. And so that also is why I went high is I got a plate
of pancakes and I only dosed for 25 carbs.” P7 echoed with similar
experience: “I tried going low carb, but then. . . But then I apparently
carb counted incorrectly. So then I went back up high. That’s been a
bit of an issue, like trying to carb count exactly correctly.”

Such scenarios may arise from ambiguous food information, es-
pecially in contexts like dining out that are different from their daily
diet routines, where individuals have to learn to estimate carbo-
hydrate quantities based on limited information. Such estimations
can be inaccurate when dealing with unfamiliar food(s). As P10
stated, “we went out to dinner, and there was Mexican food, and I
definitely underestimated how many carbs there [were].” As such,
participants commonly develop a pattern of learning daily bolusing
routines through estimations based on general food types rather
than specific meal information. They are often making estimates
(which as noted in examples above, may sometimes be inaccurate),
and some participants like P20, who said “I’m an estimator,” had a

good enough sense for certain foods that they often didn’t check
nutrition information.

However, unlike estimators, several participants adopt a pre-
cise calculation approach. For instance, P14 reported weighing
food in cases of absent labeling: “We have a little scale that can. . .
like. . .weigh stuff out that doesn’t come with a nutrition label: apples
or grapes or something.” In summary, participants adopt a variety of
approaches to using the information available to them about food
in order to influence their diabetes management decisions.

4.1.3 Self-reflective patterns. We also note that participants’ aware-
ness of glucose status seems to change over time, stemming from
self-acquired knowledge and introspection on lived experience,
such as identifying summarized patterns of symptoms or blood
glucose fluctuations. Participants described learning when to prior-
itize glucose monitoring, adjust treatment strategies, and decide on
preventive treatments from such self-reflective patterns. It is worth
noting that self-reflective patterns involve participants’ reflection
of subjective experiences, while food information primarily per-
tains to objective data (e.g., carbohydrate quantity) as previously
discussed. Additionally, this pattern emphasizes the learning of
when or what behavioral effects impact blood glucose fluctuations,
distinct from embodied manifestations centered on self-recognition
of blood glucose status.

Several participants observed that their glucose levels were usu-
ally low during work, as shared by P6 who skipped bolus during
work despite creating an intentional relatively high blood glucose
levels to avoid hypoglycemia: “Typically what it is [. . . ] I find that if
I bolus I usually have a low during work. So then I have to eat again,
which I don’t like doing while working because then I have to kind of
interrupt work.”

Physical activity can also affect blood glucose levels, but that
impact varies individually and therefore is often self-discovered.
Many participants are aware of a pattern of post-exercise blood
glucose fluctuations, which informed their learning of treatment
routines. For example, P1 highlighted increased attention to post-
exercise blood glucose levels due to their tendency to be low: “Later
that day. I’m guessing I was just keeping an eye on it just because
I had been active all day. I have a tendency to crash after exercise.”
As such, some participants learned to build and maintain a new
routine from reflection on similar tendency, exemplified by P19’s
experience:

“Before exercise, I’m always checking my phone to see
if my number’s a good number. And then after because
that’s usually when I get all the lows right after. Usually
check to see if I need a snack or if I need some fast acting
sugar. And then keeping with the routine daily, because
it tends to help with the number of highs or lows I have.”
(P19)

Relatedly, P13 highlighted a strategy of adjusting bolusing rou-
tines preventively in response to possible blood glucose drops after
exercise: “So if I’m planning on going to the gym, maybe I typically
will not bolus for a snack, just because I know that I drop when I go
to the gym. So I’m just trying to be preventative.” Moreover, such
awareness makes participants learn how to configure insulin pumps
in particular contexts, such as at school. As P11 pointed out, due to
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their exercise routines, they set “exercise activity” mode on their
insulin pump (which enables higher and narrower blood glucose
targets to accommodate the likely natural drop) as a default mode to
prevent being worried about out-of-range glucose levels at school:
“When I’m like doing weights, or something similar, any actual exer-
cise, but I kind of just leave it on during most days because at school, I
don’t want to worry about going too low. It just leaves it a little higher
than normal.”

Besides exercise, some participants observed individual-specific
daily fluctuations (i.e., out-of-range blood glucose levels at a given
time of day). Notably, some daily glucose fluctuations naturally hap-
pen. For example, elevated blood glucose levels, known as the “dawn
phenomenon,” can occur in the morning due to a natural cortisol
spike, leading to insulin resistance and elevated blood glucose [15].
Nonetheless, some participants still need to learn this through daily
patterns and understand the personal impact of such natural fluc-
tuations by themselves rather than solely from doctors, similar to
the exercise example mentioned earlier. For example, P1 shared a
lived experience of challenges in blood glucose level control when
waking up with high levels: “If I wake up high I usually have a terri-
ble time getting it down.” Conversely, P2 often experienced stable
blood glucose levels in the morning and at night, leading them to
allocate less attention to these periods. As P2 shared,

“And then there’s times especially when I have school
where I don’t have breakfast, like right when I wake
up. . . . So it usually stays pretty constant because I
haven’t eaten anything that will make it go high and
then low and I haven’t entered anything or anything.
So usually, I don’t check it as much in the morning as
in the night. Because it just doesn’t usually seem to be
going low or high at bedtime.” (P2)

Furthermore, several participants learned through patterns that
getting sick and drinking alcohol significantly influenced blood
glucose fluctuations and insulin treatment effectiveness so that
they could manage differently “on certain days.” As P4 detailed:

“And usually when I start getting sick, my blood sugars
run kind of high, and I usually have to take more insulin
to bring them down. [. . . ] Maybe drinking alcohol. . . . I
know that I found out in high school that. . . taking shots
and drinking, let’s say vodka, will actually make my
blood sugar drop pretty quickly. The first time I ever
drank, I actually went very low. [. . . ] So that’s one thing
that I learned and just more of like the habits and like,
how my diabetes is on certain days.” (P4)

4.2 Reexamining relations with health
infrastructures: Maintaining diabetes
awareness with technology

4.2.1 Data awareness. Because blood glucose control is the key
component of diabetes management, blood glucose data is a key
component of management strategies. This kind of data awareness
can aid participants’ learning of daily routines, typically involv-
ing real-time visual monitoring of blood glucose status to support

in-the-moment decision-making. Data awareness refers to the mon-
itoring, perception, and comprehension of visible data such as glu-
cose numbers displayed on management devices, including CGM
monitors and mobile apps connected to CGMs (which continuously
monitor glucose levels and update values every five minutes).

Participants highlight how they track when their blood glucose
is high or low through regularly checking data. For example, P16
said that “I just check it [numbers] regularly,” responding to the
question of how to determine high or low blood glucose status.
Some participants also prefer visualizing data to comprehend their
status due to their affinity for numbers. As reported by P1, “I just like
seeing the adjustmentsmade when it’s automated. I like data, numbers,
and stuff. So I like seeing what it [blood glucose] does.” Moreover,
participants often make judgments about the acceptability of their
current status through numerical ranges (i.e., blood glucose levels
are in normal range or not), from which they can learn when to
ignore or take action. As P5 said, “If my glucose is in check, then
I don’t really think about it.” P5 explained it further, saying that
“I mean it’s at the level it’s supposed to be, then I think about other
things. I’d say [if the levels are] somewhere in the hundreds. . . they’re
telling me that I need to be at like 120 or something”.

Notably, participants tend to check data more frequently (and
sometimes, as they would describe it, excessively) when their blood
glucose levels are out of range, which can lead to negative emotions,
such as stress. For example, as P17 shared,

“Yesterday I was around 300 for a really long time. But
I was just waiting for it to drop down. And I wanted
to, like, keep checking on it and stuff, but it was not
productive to be checking on it as frequently as I wanted
to. So it would just be stressing me out. [I went] to look
at it every, like, five minutes. And obviously, nothing’s
gonna happen in five minutes.” (P17)

4.2.2 Nudging. Our participants are usually aware of their status
through technological nudges. These nudges, comprising notifi-
cations or alerts from diabetes technologies like insulin pumps,
continuous glucose monitors, and mobile apps, serve to notify in-
dividuals about various situations, such as high or low glucose
levels, low battery of diabetes management devices, and low insulin
storage [63].

Nudging is indispensable for some participants in their daily dia-
betes management. Specifically, many participants tend to disregard
or overlook their blood glucose levels until prompted by nudges. As
P7 shared, they “rely on” such nudges during school: “Yeah, I rely
on it a lot, especially because during school I’m not thinking about
oh, like unless it beeps at me then I check it. . . .” Consequently, some
participants expressed a desire for additional nudges to assist in
being aware of their status, particularly for prolonged periods of
high or low glucose levels. For example,

“I think if I had more alarms to check my pump, it
would have helped more. Because usually I’ll have an
alarm like—Oh, your blood sugar is going high. But
when my blood sugar is staying high, it will not give
me alarms. . . . Yesterday, I was high for a good chunk
of time, and like, I wouldn’t have, maybe, one [alarm]
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and then bolus. And then I wasn’t able to check until I
woke up and I was still high.” (P4)

However, participants’ management routines may conflict with
other daily routines, such as while driving. In such contexts, partici-
pants learned that more accessible nudges could aid timely checking
or treatment, helping them navigate technologies in particular con-
texts. For example, P3 highlighted that phone nudges were more
accessible and convenient during driving:

“So if I got an alert while I was driving, I always check
in on my phone before I check in on my pump, because
usually my pump is in my pocket. And that’s harder
to reach with a seatbelt on. But on my phone, like if
I’m high, I get the Dexcom alert too. So I get two alerts
for being high. But if I’m going low, usually it’s like
Control-IQ has predicted your blood sugar will be under
70 in like the next 15 minutes, so it’s just a prediction.
So if it’s that then I’ll see just like the t:slim alert for it
[. . . ] I’ll just eat a granola bar while I’m driving [. . . ]
cuz like my phone I usually put on like the center like in
a cup holder or something. Like because I play music off
of it. So the first thing I do when I get in cars, I get my
phone out so I can figure out what I’m gonna listen to
[. . . ] But my pump is more often times than not just in
my pocket, but it’s a lot harder to access it from driving.”
(P3)

Beyond just being helpful, technological nudges are also often
perceived as less obtrusive compared to interpersonal nudges (such
as a reminder from a parent). One participant, for instance, high-
lighted a preference for technological nudges over parental calls to
alert them of their glucose levels:

“I prefer to have technology nudges than to have peo-
ple nudges because even when I was in undergrad, my
parents would always ask me [things] like how’s your
blood sugar been blah, blah. . . and I would get annoyed
and I was like, ‘Stop.’ Or they would call me to tell me
to take my insulin and I already did that. Even though I
hadn’t done it but like, I prefer tech [technology] nudges
versus actual human like calling.” (P20)

However, many participants reported experiencing negative ef-
fects from technological nudges, including annoyance and fatigue.
For example, P17 thought that alerts can be “overkill”: “I get really
mad when I hear my pump buzzing. It’s just doing its job. I know. But
that is so annoying. I guess it can be overkill sometimes.” P8 detailed
such feeling and echoed:

“I’ve maybe got like one alarm when I went high. And so
on days like that, the alarms don’t bugme at all, because
I’m just doing a good job of like staying in range. But
then the days when I’m really out of range all day, I
think they’re the most frustrating thing because they’re
going off all the time. And so it’s kind of like, on a good
day, the alarm sounds like me at all, because I’m not
even hearing them. But on the days that I’m higher or
lower, then it’s really annoying.” (P8)

Relatedly, P10 expressed fatigue and desensitization to nudges
over time, resulting in reduced attentiveness to alerts. They also
noted that mobile nudges might get mixed with other notifications,
such as text message alerts, potentially reducing their attention
capture:

“That [alert and alarms] is really helpful. But I would
say I’m definitely a little bit like desensitized to them.
So sometimes they’ll just like, you know, keep buzzing
and I won’t really notice that much because it’s kind
of just a normal thing. Especially like on my phone,
because sometimes it’s just, you know, seems like you’re
getting a text message or something, and you just don’t
worry about it. And then, 20 minutes later, it starts
actually beeping at you, and then it gets your attention.
I think they’re definitely helpful. But not noticing them
is definitely something that’s kind of developed over
time.” (P10)

Furthermore, some participants stressed experiencing prolonged
instances of nudging even after taking actions in response to them,
making them feel stressed. As P17 expressed, “One of the things that
makes me the most stressed. It’s like. . . yeah, I’m already high. There’s
nothing I can do about it. And it’s still reminding me. I’m aware. I’m
just like, waiting for it to come down.” P8 echoed: “. . . If I’m high, it
alarms and I give myself a bolus, then it still alarms that I’m high
until I actually lower when I’ve already done the action to make a
difference.”

4.2.3 Algorithmic prediction or automation. Because all of the par-
ticipants in our study were on insulin pumps with the Control-IQ
system, participants generally are aware of near-future trends of
glucose levels predicted by algorithms, in addition to aforemen-
tioned real-time glucose values. Such awareness is used to learn
when and how to proactively engage in treatment. For example,
P2 concurrently assessed both factors to determine the need for a
snack bolus:

“I bolus when I want to eat, except if it’s low, like 80
or something, and I have a little snack, I don’t bolus
them. But I still check [the algorithmic prediction] to
make sure. I like looking at the little diamond on the
Control-IQ that says if it predicts it will go low, or if it’s
orange [indicating that the insulin pump is reducing
basal insulin automatically in response to a dropping
glucose trend], if it will go low, but not below 70. I like
looking at that to see if I can have a snack without
entering anything [. . . ] I would probably wait a little
bit to see if it changes to red [indicating that the insulin
pump is stopping basal insulin altogether because the
patient is predicted to go low]. Or if it changes to not go
away and it starts going up. And if it starts going up,
then I’ll enter [the carbs for] the snack. And if it goes
to red and starts going down more, then I’ll eat it, and
hope it goes back up.” (P2)

In addition to learning to initiate proactive treatment based on
near-future trends, participants also learned when to utilize algo-
rithmic agency for treatment. For instance, P7 noted that algorith-
mic reliance partially alleviated the burden attributed to manual
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management in their daily life: “Especially like especially during
sports and everything like that. So I do rely on it a lot and it would
definitely be hard like to just manually bolus and like, and it definitely
controls [my blood sugar]. And it’s more like, I can rely on it more
than my past.” Such reliance can be attributed to the trust placed
in algorithmic agency for routine management. As stated by P12,
they believed that their management skills could not surpass the
Control-IQ algorithm, leading them to entrust their care to it:

“I don’t even know if I bolused yesterday, I probably just
let the Control-IQ take care of it. It’s what I normally
do, so. . . . I don’t think my skills ever got to the point
where I’m much better than Control-IQ. Like I think
my diabetes taking care of diabetes skill is about on par
with Control-IQ so it doesn’t really change too much.”
(P12)

In contrast, some participants found certain aspects of algorith-
mic correction (i.e., automated treatment for hyperglycemia or
hypoglycemia) less effective in specific cases, leading them to adopt
a more critical approach towards its use. For instance, P8 mentioned
taking manual control over insulin dosing during hyperglycemia
due to perceived slowness in the algorithm’s correction process:

“And so I know that Control-IQ, at least my under-
standing, is [that] it slowly gradually corrects me down.
Whereas I’m kind of like, I’d rather just get it all on
one swoop sometimes and just go lower. And so that’s
why I did the five grams [manual correction bolus] is
because I know it will do it eventually. But sometimes
I’m like, okay, now I just want to give it all now. And
I’m seeing that I’m high. So to me, it seems kind of silly
to ignore the fact that I’m high and just let my pump
do it gradually, when I could just do it myself and do it
faster.” (P8)

5 DISCUSSION
Our findings highlight how AYAs with T1D use a combination
of technological and non-technological resources to learn self-
management routines, primarily through maintaining situational
awareness about their condition, including self-awareness signaled
by subjective information (i.e., embodied manifestations and self-
reflective patterns) and externalized awareness signaled by objec-
tive information (i.e., food information, data awareness, nudging,
and algorithmic prediction). Our findings also illustrate the impor-
tance of situational awareness for AYAs with T1D to aid in the
establishment, adaptation, and maintenance of different types of
self-care practices. In this section, we discuss how AYAs infrastruc-
ture these various technological and non-technological resources to
learn diabetes self-management routines embedded in specific prac-
tices, including medical treatment, diet, and glucose measurement-
monitoring routines, for the purpose of optimal glycemic control
(Figure 2).

Like other routines, from grocery shopping to teeth brushing
in the morning, self-management requires mundane, yet critical,
routines for people with T1D, and because T1D is a chronic illness,
these routines must persist throughout their lives [36]. However,
unlike other daily routines, T1D self-management routines are

Figure 2: A diagram of how participants infrastructure vari-
ous resources in support of key T1D self-management rou-
tines

significantly more likely to involve infrastructural breakdowns.
Therefore, an important but under-studied topic is understanding
the self-organized [11] ways of knowing involved in approaching,
identifying, or establishing an individualized diabetes management
routine, as individuals’ differences in diabetes management are
impacted by “physiological, personal, and social activities” [17].
Simultaneously, AYAs’ rapid biological, cognitive, social, and emo-
tional changes, as summarized by Guo and colleagues [36], suggest
various uncertainties for young people managing T1D. In this case,
learning from various resources is one of the most prominent pro-
cesses serving to “support and promote an overarching mechanism”
of self-management [19, p. 14].

Prior studies have found that individuals infrastructure different
resources to achieve goals of self-care in various contexts, includ-
ing gender transition [71], telehealth [7], mental illnesses [13, 72],
and navigation of the healthcare system, more generally [35]. Our
study extends this understanding to T1D, a chronic illness requir-
ing everyday management routines that encompass both medica-
tion adherence and careful control over various lifestyle factors.
Furthermore, our study enhances understanding in reexamining
individuals’ relations to health infrastructure for self-care in the
context of algorithm-enhanced HCL systems, providing insights
into self-management strategies supported by clinical physiological
sensing systems. Importantly, our findings highlight the role of
subjective information in building relations with the technological
elements of these infrastructures, exemplified by reliance upon bod-
ily signals and insulin pump checking practices, which differ from
prior studies on personal experiences without technologies [17],
challenges of diabetes technology use [37, 41], and applications
supporting self-reflection in the absence of clinical diabetes tech-
nologies like HCL systems [50]. Additionally, our findings that
re-examine individuals’ relations to health infrastructure suggest
an agenda for future research in the T1D context—for example, how
to build a more effective self-care ecosystem for young people’s
self-management.
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5.1 Infrastructuring the learning of medical
treatment routines

Our findings indicate that our participants infrastructure a range
of technological and non-technological resources to learn medical
treatment routines (i.e., routines around insulin delivery). Specifi-
cally, our study highlights that AYAs learn the timing of reactive
and proactive treatment, personalized insulin dosage strategies,
insulin pump configuration, the degree that they can (and cannot)
rely upon the HCL’s predictive algorithms, and other aspects of in-
formed treatment decision-making by constructing an assemblage
of embodied manifestations, self-reflective patterns, data awareness,
nudges, and algorithmic prediction.

As previously observed in prior work, adult T1D patients adjust
physician-prescribed medication in response to their daily experi-
ences, considering how routine and non-routine activities impact
blood glucose variability [17]. Our study expands this finding to en-
compass algorithmic decisions and nudging, offering additional em-
pirical evidence to describe personalized medical practices within
the context of HCL systems. This is exemplified by the routine of
manual insulin adjustment as an augmentation to the automated
treatment regimen provided by the HCL device. Beyond medica-
tion adjustment, we also found that our participants built relations
between self-reflective experiences and insulin pump configura-
tion. For example, a participant configured their insulin pump to
“exercise activity” mode due to their exercise routine although such
setting targets a higher glucose range. Such behavior may be mo-
tivated by the fear of hypoglycemia observed among some young
adults [57].

As an important component in these infrastructure assemblages,
nudging significantly influences the development and maintenance
of medical treatment routines, as indicated in our findings. However,
breakdowns occur in the learning process due to factors like alarm
fatigue, as observed in prior clinical studies on insulin pump and
CGM adoption (e.g., [51, 63]). The scenario of alarm fatigue may
discourage people from effectively responding to alerts, and in some
instances, from using a device at all [51, 63]. Notably, although
people can customize alarm configurations on insulin pumps and
mobile apps (with the exception of fixed alerts for hyperglycemia
and hypoglycemia), certain alerts still evoke feelings of annoyance,
excessiveness, and other negative emotions. Our study reveals that
alarms may not work effectively in situations where the attention of
AYAs to immediate medical treatment is insufficient, such as during
sleep, classes, and driving, aligning with Harper et al.’s findings [37]
on the inconvenience of alarms during driving among older adults
with diabetes. In such contexts, reactive medical treatment (i.e.,
increases or pauses in insulin dosing) cannot be avoided, requiring
more glance-able platforms for signaling their status, such as mobile
apps or smartwatch “complications,” as shown in our findings.

Such findings provide insights into context-aware and fatigue
mitigation nudging design in the context of chronic illnesses like
T1D that do not offer individuals the luxury to ignore, forget, or
skip treatments (e.g., adherence to medication regimens) either
over the long-term or when experiencing short-term, non-routine
circumstances [14]. Prior studies have suggested the importance of
incorporating contextual cues into nudging design by leveraging
visual cues [43], timed reminders [2], and naturalistic ambruptive

systems [46], among others. However, most of these studies focused
on context-aware systems for self-wellnessmanagement. Because of
the severe consequences resulting from lapses in effective self-care
with T1D, there is a much higher bar for nudging design in the case
of diabetes technology. Furthermore, the specific details of the in-
frastructure assemblages that people with diabetes employ impacts
these design considerations: some young people may experience
impaired hypoglycemia awareness (i.e., have fewer symptoms of
hypoglycemia) [49], which may necessitate different nudging for
medical treatment routines. Consequently, we recommend future
research to examine variations in nudging designs, and to examine
how to enhance the effectiveness, accessibility, and flexibility of
nudging across different contexts (e.g., driving, exercising, sleeping,
or attending classes) through incorporating individuals’ experien-
tial information. For example, future design might consider the
application of various nudging styles from the existing literature,
such as naturalistic and/or ambruptive systems that provide visual
cues while mitigating alarm fatigue [46].

Importantly, our findings also highlight an important pattern
of proactive medical treatment (i.e., insulin dosing or pausing in-
sulin dosing without alarms), as exemplified by our findings of
responding to algorithmic prediction, embodied symptoms, and
checking numbers frequently during certain days or times of day
due to self-reflective patterns of anticipated glucose fluctuations.
Our findings highlight the HCL algorithm’s role in managing medi-
cation routines, exemplified by young individuals’ willingness to
cede treatment control to the algorithm in specific contexts. Nev-
ertheless, we also identify challenges in algorithmic predictions,
including issues of trust in algorithms and unmet efficiency expec-
tations, aligning with Messer and colleagues’ findings [51]. When
these algorithm-related breakdowns occur, participants revert to
manual treatment methods. Such breakdowns associated with ef-
ficiency indirectly reflects Burgess and colleagues’ conclusions
suggesting the efficiency of AI-supported clinical treatment is “a
complex, patient-specific question” for adult patients managing the
(distinct but related) condition of Type 2 Diabetes [12].

Indeed, contextualized and personalized, algorithm-assisted
treatment appears to enhance diabetes self-management for many
users of diabetes technology. Messer and colleagues [52] found
that proactive pump engagement facilitated by situational aware-
ness (more intuitive rather than factual knowledge) correlates with
better glycemic control. Our study expands on these prior find-
ings by offering empirical evidence of how young people incorpo-
rate bodily cues, sensations, and self-reflective patterns into their
health infrastructure, shedding light on the potential mechanisms
underlying improved glucose control through situational awareness-
supported proactive treatment. In addition to non-technical situa-
tional awareness, our findings also highlight the significance of
the technological components of these infrastructures in fostering
proactive management—particularly algorithmic prediction—by en-
hancing participants’ awareness of changes in their conditions.
Instances in which glucose fluctuations were prevented by, for
example, responses to a combination of embodied cues and algo-
rithmic prediction indicate that AYAs assemble or combine multiple
awareness-related resources in support of their medical treatment
routines. Prior studies suggest incorporating people’s qualitative
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experience, rather than solely quantitative blood glucose measure-
ments, into medication treatment (e.g., [17]). Our study provides
support and actionable context for this suggestion with nuanced
insights about what cues young people usually use in everyday self-
management—insights that may support future algorithm-assisted
diabetes technology research and/or design.

Nonetheless, integrating multiple-source data into algorithm
learning systems is a challenging endeavor [33] since bodily cues
may be difficult to quantify and can vary between hypoglycemia
and hyperglycemia. Subsequent research could consider incorporat-
ing additional kinds of contextual information (e.g., self-reflective
patterns and biological indicators) for personalized glucose predic-
tions to enhance algorithmic systems—for example, exploring the
viability of utilizing biological sensing such as tremor detectors [69]
to identify experiential bodily sensations such as reported feelings
of shakiness.

As previously noted, trust significantly influences AYAs in acquir-
ing and maintaining algorithm-assisted medical treatment routines.
Our research reveals diverse treatment approaches linked to vary-
ing levels of trust in algorithms, even encompassing controversies.
For instance, some participants rely on algorithm-controlled treat-
ment regimens due to the perceived superiority of these devices’
management capabilities. These findings align with Tanenbaum
and colleagues’ investigation of algorithm trust among adolescents
and adults towards diabetes technology [68]. However, their study
also addresses potential risks tied to excessive reliance on algo-
rithmic treatment in the constitution of health infrastructures, in-
cluding diminishing self-management skills and reduced vigilance
over time [68]. Future research could further explore the impact
of young individuals’ trust in algorithms on routine acquisition
and the balanced integration of human and algorithmic agency to
formulate contextually optimized management strategies.

5.2 Infrastructuring the learning of dietary
routines

Following the diagnosis of T1D, individuals’ relations to food infor-
mation infrastructure suffer regular breakdowns, largely because
food label creators’ relationship with food labels differs from that
of people with T1D. Factors such as diet composition, portion size,
and timing of food all drastically affect how food intake alters blood
glucose. Our study underscores how young people commonly em-
ploy self-reflective patterns and utilize food information to establish
dietary routines, encompassing timing, food choices, and carbohy-
drate estimation for specific contexts, such as pre-meal bolusing,
exercise, and driving. Prior studies observed that adults with T1D
frequently cited dining out and travel as unusual activities requiring
adaptation due to difficulties in food intake control (e.g., [17]). Our
findings also highlight such difficulties and extend the understand-
ing through identifying the specific infrastructural components that
individuals employ to learn a new dietary routine when experienc-
ing disruptions (e.g., using a scale to weigh foods and categorizing
food types for estimating carbohydrate amounts). Such active learn-
ing processes may stem from routine breakdowns impacted by the
dynamic living situations of AYAs, such as challenges associated
with living away from home and college social life [41, 57].

AYAs with T1D encounter unique challenges related to their liv-
ing and social situations, including novel food consumption, social
events, and drinking [41, 57]. These challenges have an impact on
their glucose control and evoke negative emotions, such as fear,
stress, and frustration associated with hypoglycemia [57]. Despite
the crucial role of dietary routines in glycemic control, the existing
food information infrastructure may not effectively facilitate objec-
tive knowledge for people with T1D, as exemplified by our study.
While many individuals rely on self-reflection and learning from
past experiences through a “trial and error” approach [19], we em-
phasize the importance of external food information infrastructure
and the future design of context-aware diabetes technology for daily
management. Although self-understanding is valuable [17, 50], we
argue that the design and development of external food information
infrastructure can enhance the effectiveness of self-management.
This is analogous to navigating through a forest: while it’s possible
to estimate a route, following signs (infrastructure) can reduce risk
and increase efficiency. However, it is essential to acknowledge
the challenges in establishing a systemic food information infras-
tructure, including factors like ingredient complexity and portion
estimation at restaurants.

AYAs, recognizing the dietary self-management challenges that
they face, may seek increased support from technological compo-
nents of their health infrastructure, specifically HCL systems, to
enhance their self-management routines. Similar to the findings
of Harper and colleagues’ study, which indicated the desire for
age- and context-specific enhancements to insulin pumps based
on responses from adults aged 45 to 54 (e.g., transmitting voice
alarms to earbuds) [37], our study extends this understanding of
age-specific customizations to include diet management support for
AYAs. For instance, some participants in our study requested nudges
or insulin pump configurations tailored to situations like alcohol
consumption, which can lead to hypoglycemia. We recommend
that future research consider these lived experiences in the design
of insulin pumps, focusing on the refinement of context-specific
dietary nudges.

5.3 Infrastructuring the learning of glucose
measurement-monitoring routines

People with T1D experience breakdowns in relations with the body
as infrastructure everyday. Our study highlights the importance
of assembling resources to learn glucose-monitoring routines (i.e.,
monitoring numeric blood glucose measurements) in achieving
glycemic targets for many people with T1D [25]. Our participants
learn when to allocate more or less attention to their blood glucose
and when to react with interactions with their insulin pumps from
an assemblage of self-reflective patterns, data awareness, and bodily
cues. For example, young people usually leverage self-reflective pat-
terns to learn when to monitor their blood glucose frequently (e.g.,
morning or night, pre- or post-exercise). They use data awareness
to monitor blood glucose in-the-moment, especially when levels
are elevated, and they use bodily cues to proactively monitor blood
glucose numbers. Notably, nudges and algorithmic prediction may
also aid the learning of glucose monitoring routines; however, our
findings indicate participants primarily utilize these resources for
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reactive and proactive treatment. We therefore noted their potential
connections to glucose monitoring with dashed lines in Figure 2.

Our findings provide important insights into AYAs’ self-care
work during the transition to independent health management,
complementing Kaziunas and colleagues’ study [42] by extend-
ing the understanding of care recipients’ self-care strategies using
data-centric diabetes technology. Through infrastructuring multi-
ple resources to adjust or maintain glucose monitoring routines, we
observed young people’s strategies to find the relationships among
their body, data, technology, and experiences, aiming to gain control
over their health and wellness. Kaziunas et al’s study [42] showed
that when parents remotely monitored their children’s glucose val-
ues, they experienced improvedmultiplicity (e.g., freedom, empathy,
and togetherness) through use of diabetes technology. Our findings
about how AYAs construct assemblages of resources in support of
glucose monitoring routines enrich such understanding by further
offering young people’s perspectives. Future diabetes technologies
can utilize an assemblage of contextual and experiential data, as
shown in our study, to offer stronger, holistic interventions for dia-
betes self-management that go beyond glucose values alone [42].

Prior studies have also provided valuable suggestions for incorpo-
rating contextual information into self-tracking health technologies.
For example, Ng and colleagues [53] suggested that self-tracking
systems should contextualize data (e.g., sleep and stress data) gen-
erated during non-routine circumstances—pregnancy is the case in
their study—to improve bodily sensemaking and mitigate misinter-
pretation. However, these examinations are mostly around personal
wellness systems rather than clinical treatment technologies based
on physiological data [3]. Additionally, distinct from hierarchical
goal-setting and reduced routine tracking for mitigating lapses ex-
plored previously [59], self-monitoring for T1D is challenging to
simplify. Goals of awareness, taking action, and monitoring [59] can
be interconnected. Also, reducing routine tracking [59] may over-
look vital contributors, as routines like diet, exercise, and sleep sig-
nificantly influence medication and glucose monitoring. Therefore,
the novelty of our study is in extending these prior understand-
ings to algorithm-supported and data-centric clinical treatment
systems (i.e., HCL systems) for life-threatening chronic conditions
that are rife with ongoing and repeated disruptions. Furthermore,
our study highlights how diabetes data tracking is relational and
situational for management routines, and how it contributes to
the understanding of critical, chronic condition management. For
example, lapses in glucose monitoring routines due to reasons like
low energy require alternative support for sustained awareness.

These findings can also provide insights for data visualization
of clinically oriented personal health technologies, which largely
utilize sensor-based physiological data [3]. We suggest that relevant
systems should support the visualization of relations from a mix
of self-awareness, physiological sensor-based data, and AI-based
predictive data, mirroring the complexities of individuals’ health
infrastructure assemblages and providing more insightful feedback
and critical reflection to patients, particularly young patients during
the crucial learning state of bodily sensemaking.

5.4 Implications for human–machine
collaboration in health management

Our study underscores the importance of incorporating diverse
data modalities and rebuilding and maintaining patients’ routines
for effective human-machine collaboration in managing complex
chronic health conditions. Different health conditions require spe-
cific resources and situational awareness to adapt and maintain
routines in everyday life. In cases like T1D, both non-medical and
medical routines significantly influence one other, emphasizing the
equal importance of supporting both. For example, Hurley and col-
leagues [40] proposed continuously sensing physical activity and
sleep routines for cardiovascular disorder management, integrating
multiple sensing modalities (e.g., wrist and chest sensors) and users’
contextual input (e.g., labeling data) as inputs into personalized
machine learning systems. However, current physiological sens-
ing technologies mainly focus on sensing and prediction, with less
consideration of dynamic or fluid collaborations between patients
and machines. For example, if systems detect non-routine activi-
ties, how can systems provide individuals sufficient and effective
awareness to adjust other routines for more optimal management?
We recommend that future (semi-)automated clinical treatment
and health support technologies should extend beyond the body–
machine relationship to encompass connections among body, data,
technology, experiences, and circumstances (after the network that
we presented in Figure 2), eventually facilitating the support of
people’s seamless routines in everyday life.

In other chronic conditions like mental illnesses, existing schol-
arship in HCI and CSCW suggests that people use technology
ecosystems for self-management [13, 72] for purposes like seeking
help and balancing life and episodes [72]. These findings prompt
further exploration of managing comorbidity of T1D, such as men-
tal health challenges of AYAs with T1D. Given that few studies
have focused on exploring the self-care ecosystems for diabetes
management, future studies can expand on our work to examine
the technology ecosystems people with T1D use and their purposes,
which might provide valuable insights for researchers, designers,
practitioners, and clinicians to better support patients.

6 CONCLUSION
In this study, we conducted 20 interviews with adolescents and
young adults (AYAs) with Type 1 Diabetes using hybrid closed-
loop insulin pump systems for self-management routines. We find
that AYAs maintain diabetes awareness both without technology
(i.e., embodied manifestations, food information, and self-reflective
patterns) and with diabetes technology (i.e., data awareness, nudg-
ing, and algorithmic prediction or automation). We further discuss
how AYAs infrastructure the learning of self-management routines
served by this multifaceted situational awareness. Our study pro-
vides nuanced insights into contextualized diabetes management
advocated by the HCI community and informs future context-aware
diabetes technology design.
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